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1. INTRODUCTION

In the first year of this study we showed that the dyadic transform was not sufficient for our case mass
of detection [1]. Last year, we developed multi-scale adaptive histogram equalization (MSAHE) that
achieved a global contrast enhancement by adjusting contrast locally through reassigning a central
pixel the value through a local histogram equalization mapping function. This past six months we
have implemented a level set method of segmentation for the detection of masses within a multi-scale
expansion. This report provides an overview of this method and describes progress to date. Since this
is a final report, we will summarize previous accomplishments and status of the project overall, at the
end.

Traditional methods of segmentation, such as pixel-based clustering, region growing, and edge
detection, requires additional pre-processing and post-processing as well as a considerable amounts of
expert intervention or information of the objects of interest. Furthermore the subsequent analysis of

segmented objects is hampered by primitive, pixel or voxel level representations from region-based
segmentation [1].

Deformable models, on the other hand, provide an explicit representation of the boundary and the
shape of an object. They combine several desirable features such as inherent connectivity and
smoothness, which counteract noise and boundary irregularities, as well as the ability to incorporate
knowledge about the object of interest [1,3] [4]. However, parametric deformable models have two
main limitations. First, in situations where the initial model and desired object boundary differ greatly
in size and shape, the model must be re-parameterized dynamically to faithfully recover the object
boundary. The second limitation is that it has difficulty dealing with topological adaptation such as
splitting or merging model parts, a useful property for recovering either multiple objects or an object
with unknown topology. This difficulty is caused by the fact that a new parameterization must be
constructed whenever the topology change occurs, which requires sophisticated schemes [5, 6].

In the body of this report an alternative approach of coping with weaknesses in existing methods of
segmentation of masses is described.

2. BODY

DETECION OF MASSES VIA EVOLUTION OF LEVEL SET BOUDARIES

In existing level-set methods, the gradient information is used as a stopping criterion for curve
evolution, and also provides the attracting force to the zero level-set from the target boundary.
However, in a discrete implementation, the gradient-based term can never fully stop the level-set
evolution even for ideal edges, leakage is often unavoidable. Also the effective distance of the
attracting force and blurring of edges become a trade-off in choosing the shape and support of the
smoothing filter. The proposed homogeneity measurement provides easier and more robust edge
estimation, and the possibility of fully stopping the level-set evolution. The homogeneity term
decreases from a homogenous region to the boundary, which dramatically increases the effective
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distance of the attracting force and also provides an additional measurement of the overall
approximation to the target mass boundary. Therefore, it provides a reliable criterion of adaptively
changing the advent speed. By using this term, the leakage problem was avoided effectively in most
cases compared to traditional level-set methods. The computation of the homogeneity operator is fast
and can be done within seconds on a PC workstation.

Curvature evolution and Level set

Level set segmentation [7, 8], also referred as geometric deformable models, provides an elegant
solution to address the primary limitations of parametric deformable models. In the 2D case, the
boundary of an object is implicitly represented as the zero-level set of a time dependent 2D function,
which is usually called the level set function. A useful property of this approach is that the level set
function remains a valid function while the embedded curve (the zero level set) can change its
topology. '

The evolution equation for the level set function ¢(x, y,¢) takes on the following formula [9]:

%9 -
. +F|Vg|=0 (1)

The evolution of the level set function was determined by the speed function F. As an example,
imagine that given an initial closed curve that is evolving under three simultaneous motions. First, it is
expanding with a constant speed in its normal direction; second, it is moving with a speed proportional
to its curvature; third, it is being passively advected by an underlying velocity field whose direction
and strength depend on position and time, but not on the front itself. This entire motion can then be
written in terms of the speed function as an explicit level set scheme:

F=F +Fcurv+F:1dv (2)

prop
where F, = = F is the propagation expansion speed, F,, =—éx is the dependence of the speed on the

curvature x, and F,, = U (x,y,t)on is the advection speed, where 7is the normal to the front. The
PDE in (1) can be solved with entropy-satisfying schemes given the speed function.

A small modification version of (2) gives the general formula for level set segmentation:
¢,+g,(1-¢x)|Vg|~ fVPV=0 )

In the term 1-e&x, the uniform expansion with speed 1 corresponds to the inflation force used by
Cohen [10]. The diffusive term ex smoothes out the high curvature regions and has the same
regularizing effect as the internal deformation energy term in thin-plate-membrane splines [2]. The
term g, was computed from the image data, and provide a halting criterion for the speed function, the
value of g, should be between 0 and 1, and ideally, with 0 on the boundary and 1 within the
homogeneous region (either within or outside the object). Typically, it can be estimated by the
gradient:

1
1+|V(G, *I(x,y))|

8/(x,y)= 4)

where the expression G, *I denotes the image convolved with a Gaussian smoothing filter whose
characteristic width is o . The term V(G, *I(x, y)) is essentially zero except where the image gradient
changes rapidly, in which case the value becomes large. Thus, g, is close to unity away from
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boundaries and drops to zero near sharp changes in the image gradient. These changes presumably
correspond to the edges of the desired shape. In other words, the first term in (3) anticipates steep
drops in the image gradient, and retards the evolving front from passing out of the desired region. The
second term in (3) is a force which attracts the surface towards the boundary, which has a stabilizing
effect, especially when there is a large variation in the image gradient value. This term denotes the
projection of an attractive force vector on the surface normal. This force, introduced in [11], is realized
as the gradient of a potential field. Here:

P=-|V(G, *I)| )
attracts the surface to the edges in the image, the coefficient S controls the strength of this attraction.
Apparently, both terms depend on the edge map V(G, *I), and the quality of this edge estimation
determines performance of the segmentation.
“Scale Map” based on homogeneity measurement

“Scale” is a fundamental, well-established concept in image processing [12, 13]. The premise behind
this concept is to consider the local size of the object in carrying out whatever local operations that is
to be carried out on the image. It has previously been used as a metric of local homogeneity [13].

“Object Scale” in an image C at any pixel ¢ was defined as the radius 7(c) of the largest hyper ball
centered at ¢ which lies entirely in the object region [14].

A hyper ball B, (c)centered at pixel c is a collection of pixels around ¢, i.e. B,(c)={eeC||c—¢|<r}.
For a ball B,(c)of any radius & centered at ¢, a fraction function FO,(c) was defined, which indicates
whether the fraction of the ball boundary is sufficiently homogeneous to the inside region of the ball:
Z,,,_:Bk (c)_Bk_](c)W(|f (©-f@)
[B.(¢)~ B,.,(c)

where |Bk (¢)-B, (c)| is the number of pixels in B, (c)—B,_(c)and W is the homogeneity function,

which measures the similarity of two pixels based on their pixel value in the image f{x). Some
typically used homogeneity functions for this sake are illustrated in Figure 1.

FO,(c)= , '(6)
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Figure 1: Examples of homogeneity functions for computing the fraction function in (6).



The mathematical formulas for the homogeneity functions in Figure 1 are:

1, 0<x<
(@) W(x)={ P24
0, x>a
bl’ 0<x<a
(b) W(x)= b"x, a<x<h )
0 x>b

© W)=¢ /% k>0

By setting a fixed threshold0 <¢ <1, the scale map at a pixel ¢ can be computed by the following
pseudo-code:
begin
k=1;
while FO,(c)2t do
k=k+1;
endwhile
r(c)=k;

end

Methodology for computing an edge map based on homogeneity metrics
The scale map described above provides a robust homogeneity measurement by incorporating a
tolerance level ¢. For example, if we use ¢ = 7 8> in a 3x3 neighborhood of a pixel ¢ in a 2D scene, we

allow one out of the eight neighboring pixels to belong to a different object (to account for noise) but
still consider the neighborhood to be entirely within the same object. This actually provides a
mechanism of denoising within the homogeneity measurement.

An edge was defined as a region of an image in which the pixel value changes significantly over a
short distance [15]. Therefore the edge represents a region that has significant lower homogeneity.
Thus a homogeneity measurement certainly provides edge information within an image.

Figure 2 shows the “scale map” computed by the algorithm above using different parameters.




Figure 2: scale map of breast radiograph image. (a) original mammogram (256 gray levels).
(b) scale map computed with parameter, £>=500, t=0.8.

Here we use equation 7(c) as the homogeneity function for computation. The two parameters for
computing the scale map are the shape parameter of the homogeneity function (), and the tolerance
value for homogeneity measurement (). Parameter k determines how much variation in the pixel value
is tolerated in terms of homogeneity. Paramter ¢, as discussed previously, determines how much noise
we want to ignore. Figure 2(b) shows the appearance of an edge map with lower values on the
boundary and higher values on the homogeneous regions. As shown in Figure 3, when we scale the
pixel values of this edge map to the interval [0,1], it can be used effectively as an image-based term for
level set segmentation of masses.

Level set segmentation using a homogeneity edge map
The level set evolution function (3), without the attracting speed term, can be written as:
¢t +g,|V¢|—g,aKlV¢l =0, ®

where the first term in (8) provide the expansion speed along the normal direction of the curve, the
magnitude is g,, therefore, in the non-boundary region, we want the edge map g, to be as large as
possible, so that the curve evolution can converge to the real boundary quickly. Ideally, g, will be zero
on the estimated boundary, so that when the curve reaches it, the evolution function becomesg, =0,
and reaches equilibrium. But since the gradient V(G, *I) will never be infinity in the discrete

implementation, g, will never become exactly zero. Thus care and reliable methods are needed to stop
the level set evolution when it reaches the estimated boundary.

In this research, we used the edge map defined by a homogeneity metric, where the value of the edge
map can be zero on a sharp boundary. This provided a more reliable stopping criterion than traditional
gradient operators alone. However, because of noise tolerance, a weak boundary could be non-zero.
Also, missing boundaries may occur due to the angle of an X-ray projection, therefore, boundary
leakage may happen if the boundary definition in the original image is not perfectly clear. This in part
motivated our development of the MSAHE algorithm described in the beginning sections in this report.
The attraction term (5) introduced in [11] is used to pull back the curve when it passes a boundary. We



added an adaptive indication term that shuts down the expansion speed when the curve became close to
the estimated boundary. The evolution function we used was:

¢ +g;-6-|Vo|-ex|Ve|- fYPVH=0. ©
The reason why we took out g, from the second term is that when the curve approaches the boundary,

the value of g,became very small, and therefore the smoothing effect was eliminated. When using the

attracting term, the curve always appeared noisy due to imperfect boundaries in the edge map. This
strategy is analogous to those used in parametric deformable models that always keep a constant
weighted elastic internal force.

Jis an global indication function such that when the zero level set of ¢ is close enough to the

estimated boundary, & = 0and otherwise § =1. Looking at the computation of the homogeneity map,
intuitively the pixel value in the edge map is decreasing from the homogeneous region to the boundary,
and reaches the minimum at the boundary. Therefore the pixel value of the edge map actually gives the
information of how close a certain pixel is to the boundary. By averaging the values in the edge map
over the pixels that represent the zero level set, or finding the maximum value, we can ascertain how
close the whole curve is to the target boundary. A threshold is chosen so that when this value is smaller
than some thresholdd =0, and otherwised =1.



Figure 3: Sample mass detection by enhancement within a multi-scale expansion:
(a) original image (b) enhanced image (c) segmentation (shown in red boundaries) based on (b).
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3. KEY RESEARH ACCOMPLISHMENTS

During the past six months of the project we incorporated an expansion based method of detecting
masses in digital radiographs.

e We implemented a level-set method of segmentation that made use of a local homogeneity
operator for the detection of subtle masses in digital mammography.

e This expansion based method is integrated into our previously described multi-scale expansion
framework and will be tested using a local database of digital mammograms as part of a
planned validation study.

In our proposal we made the conjecture that existing methods of analysis computed (efficiently) on
dyadic scales were not sufficient for the detection of masses: a lesion may be too blurry at one scale,
and too precise at the next finer (dyadic) scale. In the first part of this study, we answer the question “Is
it sufficient to work with dyadic scales, or is there an absolute need to compute coefficients between
the scales?” Indeed, during the course of this investigation we have clearly shown that there is a
significant advantage in the capturing the morphology of arbitrary sized masses when using finer
“grained” expansions.

Throughout this study we have avoided development of not “reinventing the wheel” whenever
possible. We choose to use or modify existing libraries and programs readily available within the
mathematical community. For example, we modified under Matlab several existing LastWave
algorithms, including the Discrete Wavelet Transform in two dimensions without downsampling, using
the Algorithme a Trous algorithm. An ancillary benefit to this approach is that when this code is made
available to the research community it will be easy to use having been built upon “freeware” and
commercially available programming environments. All of the programs for computing the expansion
and detection algorithms (written in “C” and/or MatLab code ) during this the course of the study are
available upon request through our web site: bil.bme.columbia.edu”.

We compared in one dimension the CWT and the DWT in order to show a proof of concept concerning
any advantage of pursuing refinement of scale. We processed phantom masses, and 1D intensity
profiles of real masses mammograms to evaluate feasibility. In order to identify the best scale, we
evaluated the use of maxima of the coefficients and a correlated model using three masses of different
size. We then evaluated the shape of the “Mexican hat” for suitability in a matched filtering detection
paradigm. During the third year we applied enhancement algorithms as a preprocessing step and
introduced the notion of “voices” which allowed us to compute representations of masses in between
octaves of the expansion.

4. REPORTABLE OUTCOMES

The following publications are presented as reportable outcomes of the investigation. For
convenience, we have included selected copies of these manuscripts along with this report.




Publications:

(0) Y. Jin, A. Laine and C. Imielinska, "An adaptive speed term based on hdmogeneity for level-set
segmentation," Medical Imaging, Proceedings of SPIE., Vol. 4684 (1), pp. 383-390, Feb. 2002, San
Diego CA.

(1) M. A. Birgen, S. Smith, A. F. Laine, “Detection of Masses in Mammography Through Redundant
Exapansions of Scale, "Proceedings of the 23rd Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, Istanbul, Turkey, October; 2001.

(2) R. Mekle, A. Laine, S. Smith " Evaluation of a Multi-Scale Enhancement Protocol for Digital
Mammography," Image-Processing Techniques For Tumor Detection, R. N. Strickland, Ed., Marcel
Dekker, New York, NY, (2001) pp. 155-186. ‘

(3).W. Huda, Y. Jin and A. Laine, "Evaluation of Contrast Enhancement by Digital Equalization in
Digital Mammography," World Congress on Medical Physics and Biomedical Engineering, Chicago,
2000.

(4) R. Mekle, A. Laine, S. Smith, C. Singer, T. Koenigsberg and M. Brown, " Evaluation of a
Multiscale Enhancement Protocol for Digital Mammography," in Wavelet Applications in Signal and
Image Processing VIII, A. Aldroubi, A. F. Laine, M. A. Unser, Eds., Proceedings of the SPIE Vol.
4119, pp. 1038-1049, San Diego, 2000.

(5) Koren, A. Laine, S. Smith, E. Nickoloff and F. Taylor, "Visualization of Memmography via
Fusion of Enhanced Features," in M. Doi (Editor), First International Workshop on Computer-Aided
Diagnosis, Elsevier Science, Amsterdam, 1999, pp. 287-303.
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5. CONCLUSIONS

The major problem of level set segmentation is boundary leakage when weak boundaries or occluded
parts of a mass boundary are evident. In this research, we kept the expansion term initially for
“pushing” the model towards the boundary, and therefore had no need for a restricted initialization.
When the expansion term was shut down, we observed that it prevented boundary leakage.

The definition of our homogeneity measurement did not include any prior knowledge of the
dimensions, and therefore can be easily extended to higher dimensions and it is computationally
efficient because no filtering/convolution is involved. In addition, to collect all the pixels around the
zero level set needed to compute the indication function § was a byproduct of the procedure for
constructing the extension speed when iterating the level set function. Therefore this test can be done
whenever the construction of the extension speed is performed without extra computation.

Since this research has presented a new edge map, other methods based on speed terms driven by edge
maps [16, 20] can be designed to achieve more reliable level set evolution and segmentation. In the
future, extensions to higher dimensional datasets and building other desirable speed terms based on
“hyper edge maps” and other information of the underlining image are possible.

Overall Summary

The idea of this “Idea Award” was to detect subtle masses in mammograms by tuning the central
frequency and width of a basis function that generates overcomplete expansions. By modeling the
shape of a mass through this flexibility we hoped to detect small and subtle masses in dense breasts
and improve the chances of early detection in screening mammography. In the first part of our
investigation, we evaluated existing tools to compute overcomplete expansions of multiscale signals.
We compared in one dimension the CWT and the DWT for a proof of concept concerning any
advantage of pursuing refinement of scale. We processed phantom masses, and 1D intensity profiles
of real masses mammograms to evaluate feasibility. In order to identify the best scale, we evaluated
the use of maxima singularities and a correlated model using three masses of different size. Our study
answered the question of weather of not dyadic scales were sufficient to detect masses in a dense
mammograms. We clearly showed that reasonable approximations of mass shapes could be obtained
through overcomplete expansions that computed voices between the traditional dyadic scales.

Our study of one dimension cases answered the question of weather of not dyadic scales were
sufficient to detect masses in a dense mammograms. We showed that reasonable approximations of
mass shapes could be obtained through overcomplete expansions of a continuous wavelet transform
that computed voices between the traditional dyadic scales.

We observed in mathematical phantoms and real masses that a correlation method (between a model of
a mass and the values of the computed coefficients) gave approximately the same results when
compared to the maxima method (maximum of the coefficients at each scale). We developed a simple
scheme to detect masses using these representations. This method based on geometric properties of
segmented masses within each expansion was shown to be remarkably stable.
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DETECTION OF MASSES INMAMMOGRAPHY THROUGH
REDUNDANT EXPANSIONS OF SCALE
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1Department of Biomedical Engineering, Columbia University, New York, NY, USA

*Breast Imaging Center, New York Presbyterian Hospital, Columbia Presbyterian Medical Center,
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ABSTRACT

We show that dyadic scales may not be sufficient for the
detection of masses in mammograms: a lesion may be too
blurred on one scale, and then too fragmented at the next.
In this paper, we report on the preliminary evidence of
our study using a continuous wavelet transform in two
dimensions with arbitrary positioning of a wavelet’s
center frequency channel tuned to the mass detection
problem. Our goal is to detect masses in dense
mammograms whose diameter is smaller than 1 cm. The
aim is to be able to find the scale where the mass is best
represented in terms of analysis.

1. INTRODUCTION

An initial study in one dimension helped us observe that
dyadic scales are often not sufficient to detect a mass in a
dense mammogram [3]. Below we show this by a
continuous wavelet transform, which computes the
decomposition on voices between traditional dyadic
scales.

2. METHODOLOGY
2.1. Voices and octave

It is possible to expand a signal more finely and compute
scales between octaves of traditional dyadic expansions
by voices [1]. A voice constitutes a subdivision of an
octave. If we consider a wavelet mother ¥/, a family of
m
wavelets l//,,,,,(x)=a0_2y/(a§"'x—nbo) where a, is the
dilatation parameter, b, is the translation parameter,
(m,n) € Z* are possible. In the dyadic case, a;=2 and

by=1, v, ,(x)= 2_% w(2™"x-n). Decomposing N voices

. . 1%
per octave means creating N functions Wn,m and

computing the frame
{l//,‘,’,,n :(mn)eZ’,v=1,.,N}. Analyzing with N

voices means finding N different frequency channels,
which correspond to the N frequency localizations of

¥',...,1" [2], all translated by the same step (Fig. 1b).
Such a lattice can be viewed as the superposition of N

different lattices of the type shown in Fig. 1a, stretched

by fixed amounts in frequency For example a possible
v-1

choice for %" is y(x)=2" ¥ v (2 ¥V x).
If IV’(§)| , which we assume to be even, peaks

around *@,, then |l/7’ lwill be concentrated around

Il
2 ¥ @, in the same way as in the dyadic case. If

|1,?)| has two peaks in frequency at £§,, IQZJM (5)| then

peaks at £2" £ which are two localization centers of
Vi

The équation computing the scale for source

glven “octave”, “current voice” and “number of voices”
current voice

ls Scale 2ocmve+num5er voices [3]

Moreover, we adopt the following convention:

the first octave (octave number zero) corresponds to the
1
width between scales 1-+2™"-"= and 2. The
dyadic scale of an octave is the last voice of the octave
(scale = 2°***"). In Fig. 2, we consider a signal of 512
points (2°). This means 9 octaves (octave 0 to octave
8). The coarsest scale is 512, the finest is
1

14 2mmbericss | For example, when we display a
second voice of the fourth octave (four voices per

2
octave computed), we obtain the scale 2°'#, that is to
say scale 23.

2.2, One-dimensional experiment

We applied programs from libraries in LastWave and
Matlab, using a continuous wavelet transform and a
discrete wavelet transform. LastWave is a wavelet




signal and image-processing environment, written in C
[4]. Wavelab is an extension of Matlab. For the CWT,
we concentrated on the first and the second derivative of a
gaussian function (Mexican Hat wavelet). We processed
phantom signals with three masses of distinct sizes using
gaussian additive noise.
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Fig. 1. The time-frequency lattice: (a) for the dyadic wavelet
transform, ¥, is localized around 2™nby; a,=2 and we assume
be=1; (b) for a scheme with four voices, the different voice
wavelets ¥, ..., Y* are assumed to be dilatations of a single

function ¥, o/ (x) = 2#1/,(2“%1 x)-
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Fig. 2. The time-frequency lattice for a scheme with four voices
per octave, including the scale axis.

We plotted two scan line profiles (Fig. 4) of a real
mammogram (Fig. 3).

Fig. 3. Real mass from a mammogram. The white lines
show the locations of the extracted profiles corresponding
to Fig. 4.
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Fig. 4. 1D sections of a real mammogram.

As shown in Fig. 4, we added gaussian noise on the
phantom mass so that the 1D signal had approximately
the same shape as a real mass. Fig. 5 shows this
representation.
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Fig. 5. Phantom signal with an added white gaussian noise of
variance 0.1.

Fig. 6 depicts the results obtained without
downsampling. The signal was composed of masses
with a white gaussian noise of variance 0.1. The
wavelet was a Mexican Hat.
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Fig. 6. Analysis by a DWT on a phantom with gaussian noise
(var = 0.1). We show approximation and detail signals at
scales 8 (left) and 16 (right).



2.3. The 2D CWT

We began the 2D study with phantom masses of white
objects on a black background with the addition of white
gaussian noise of variance 4. We applied a bias to the
magnitude values to preserve the waveform shape and
make the signal purely positive [5]. Next, we performed
the analysis on a cancerous mass from a mammogram
(Fig. 3). We show the biased unthresholded results in
Fig. 7, and the thresholded values in Fig. 8.
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Fig. 7. CWT_2D at octaves 4 to 6, four voices per octave. No
_thresholding on biased coefficients.
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Fig. 8. CWT_2D at octaves 4, 5and 6, four voices per octave.
Coefficients are biased and thresholded among scales (10 for
scale 38 to 20 for scale 128).

2.4. Fractional Splines

We have more recently focused on the Fractional Spline
Wavelet Transform [6,7]. We have extended the
implementation to two dimensions, which was described
originally by M. Unser and T. Blu [8]. We used

orthonormal filters to compute the details (horizontal,
vertical and diagonal) and the approximation coefficients
of the image by applying the filters,

) —jw \&H 2041 (_jo
nsler)-a ) A
Gile®)=er(-e) |

where 4% (Z) is the autocorrelation filter of degree o .

The transform is computed for a real mass
along the scales for different values of the spline
parameter & (Fig. 9).
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Fig. 9. DWT in 2D at scale 4 and 8, for 4 values of a..

As shown in Fig. 9, we do not always observe a good
representation for different values of the parameter o.
However, we clearly observe that the detection is better
for a=0.2. The parameter of the spline is continuous
(0>-0.5). Therefore, it is interesting to make the
parameter vary in order to find the best basis, which
suits well a given mass size. However the present
transform is only computed at dyadic scales. With a
continuous analysis, which would allow decomposition
on voices between these scales, we may obtain a richer
parameter space so as to identify a best basis for mass
detection.

3. Correlation Analysis

Given the results in one dimension, we then
implemented a 2D continuous wavelet transform. Our
goal was to now find the most suitable scale to detect a
mass of arbitrary size. To find the best scale, we
displayed the maxima of the coefficients along scales,
the third dimension giving the magnitude of the
maxima at each scale. In addition, we plotted the
correlation between the original mass and ‘the
coefficients of the CWT at each scale. We expected to
find different optimal scales according to the size of a
mass. We tested this by carrying out our algorithm on
three different size masses. We first computed for each
mass the CWT in 2D on 9 possible octaves (3 voices
per octave). Then for each octave and scale we plotted



the maxima of the coefficients of the wavelet
decomposition as shown in Fig. 10.
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Fig. 10. Evolution of the maxima of the cwt2d across scales.

The positions of the maxima of the decomposition were at
scales 40, 81 and 128 for small, medium and large masses
respectively.

Next, we performed the CWT in 2D on the same number
of octaves and voices. For each scale we calculated the
correlation between the original image without noise and
the 2D CWT decomposition as shown in Fig. 11.
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Fig. 11. Correlation between the original image and the biased
values of the decomposition.

The positions of the maxima of the correlation were at
scales 64, 102 and 161 for small, medium and large
masses respectively.

The most suitable scale using the method of the maxima
evolution was not the same as the scale identified with
correlation. Next, we attempted to find the best scale for
a real mass. This time, the best scale to detect the real
mass was the same for both methods (maxima evolution
and correlation) at scale 161. We also considered a very
noisy signal (variance 4), for robustness. We analyzed
the maxima of the coefficients and the correlation for
different noise settings. From these results we observed
that both methods identified same scale values regardless
of the amount of added noise.

4. Multi-scale Adaptive Histogram Equalization

Analog and digital mammography often contains 12
bits or more of significant contrast information.
Anatomical tissues may occupy significantly different
dynamic ranges on display due to difference of X-ray
attenuation. By comparison, the human visual system
can only perceive less than 100 different gray levels
[9]. Thus, contrast enhancement is usually needed for
clinical readings. This section discusses one approach
for contrast enhancement utilizing multi-scale analysis.
Sub-band coefficients were modified by the method of
adaptive histogram equalization. To achieve optimal
contrast enhancement, the sizes of sub-regions were
chosen with consideration to the support of the analysis
filters. The enhanced images provided subtle details of
tissues that are only visible with tedious
contrast/brightness windowing methods currently used
in clinical reading.

By properly selecting the decomposition filters, desired
features of an object can be separated from noise.
Therefore we can selectively enhance features of
interest by modifying corresponding components in the
transform domain. We used the quadratic spline
wavelet function y/(x), which has compact support
and is continuously differentiable. It is the derivative
of a cubic spline function @(x) as seen in Fig. 12. It

can be shown that by using a wavelet that is the
derivative of a smoothing function the wavelet

transform Wz'f S of the signal f is proportional to the

derivative of the signal smoothed at scale 2’. The
wavelet transform can then be considered as an
adaptive (scale dependent) detection procedure that
finds signal variation points in two orthogonal
directions x and y [10].

(a) (b)
Fig 12. (a) Cubic spline smoothing function 6(x). (b)
Quadratic spline wavelet y(x) of compact support defined as
the derivative of the smoothing function.

In Fig 13, we present results on mammography data,
which shows significant improvement over existing
traditional window and leveling techniques used in
soft-copy stations. The contrast limited adaptive
histogram equalization (CLAHE) clearly enhances
monographic features.
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Fig. 13. (a) original film, (b) detailed window &
leveling by a radiologist, (c) contrast limited adaptive
histogram equalization (CLAHE).

5. ROC Study: Experimental Design ,

Our study focused on density 3 and 4 mammograms, on
BiRads scale. A total of 60 cases, subdivided into 2
groups (15 cancers & 15 normals) were read by three
radiologist [11]. The diagnosis for mammograms
included BI-RAD (0-5), LOC value (1-5) and
localization of detected lesion.

We have divided the radiologist into 2 groups:

Group 1: “Softcopy Display” + Interactive Contrast
Enhancement.

Group 2: “Softcopy Display” only.

Our softcopy monitors consist of high-resolution
(2048x2560) dual Barco SMP1H displays. Fig. 15.
depicts a radiologist participant in the study along with
dual monitor displaying monographic data.

Fig. 15. Actual, experimental study.

The ROC analysis can be seen in Fig. 16. The area
under the curve with computer aided enhancement and
without enhancement is 09136 and 0.8405
respectively. The computer-aided diagnosis brings a
noticeable improvement in cancer screening.

ROC Curves for Data with and without Enhancement

E /ﬁ;___w—-—- ——With Enhencement

~=Without Enhencement

True Positive Fraction
(TPF)
o
[4)]

0 05 1
False Positive Fraction (FPH

Fig. 16. ROC curves for data from Group 1 (“with
Enhancement”) and from Group 2 (“without Enhancement”)

[11].



6. CONCLUSION

Our studies in one and two dimensions suggest that

dyadic scales are often not sufficient to detect a mass in a
- dense mammogram. We showed the advantage of a
continuous wavelet transform, which computed an
expansion on voices between the common dyadic scales.
We saw on real images of masses extracted from digitized
mammograms that a correlation method between a known
mass and the values of computed coefficients yielded
approximately the same results, as a maximum method
evolution. Thus, this study suggests that it is possible and
of value to tune an analysis between octaves, for the
detection of subtle masses in mammograms.

On a second front, a multi-scale adaptive histogram
equalization method was reported here, which showed
promising results on mammography interpretation. We
claimed that the advantage of this method comes from
combining the local enhancement ability of AHE, and the
selectivity of spatial-frequency components from wavelet
analysis. The overall diagnostic sensitivity compares
favorable with state-of-art enhancement methods, and
also circumvents and reduces some of the artifacts
visualized with existing methods. The ability of
simultaneously displaying the full dynamic contrast range
was shown to be efficient in terms of interpretation time.
The diagnostic performance showed the possibility of
building a new “Power Windows” scheme for clinical
usage.

Following the conventional three-windows settings, we
can also tailor the parameters to find the best
enhancement for particular abnormalities based on their
spatial-frequency properties. This method proves to be of
value in isolating cancer masses of diameter 1cm or less.
We certainly expect a more reliable diagnosis compared
to existing windowing schemes.
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ABSTRACT

We have carried out a receiver operating characteristics (ROC) study for the enhancement of mammographic features in
digitized mammograms. The study evaluated the benefits of multi-scale enhancement methods in terms of diagnostic
performance of radiologists. The enhancement protocol relied on multi-scale expansions and non-linear enhancement
functions. Dyadic spline wavelet functions (first derivative of a cubic spline) were used together with a sigmoidal non-linear

enhancement function [1], [2]. We designed a computer interface on a softcopy display and performed an ROC study with
three radiologists, who specialized in mammography. Clinical cases were obtained from a national mammography database
of digitized radiographs prepared by the University of South Florida (USF) and Harvard Medical School.

Our study focused on dense mammograms, i.e. mammograms of density 3 and 4 on the American College of Radiology
(ACR) breast density rating, which are the most difficult cases in screening, were selected. To compare the performance of
radiologists with and without using multi-scale enhancement, two groups of 30 cases each were diagnosed. Each group
contained 15 cases of cancerous and 15 cases of normal mammograms. Conventional ROC analysis was applied, and the
resulting ROC curves indicated improved diagnostic performance when radiologists used multi-scale non-linear

. enhancement.

Keywords: Multi-scale analysis, ROC analysis, contrast enhancement, digital mammography, softcopy display.

1. INTRODUCTION

Recently, research has focused on the development of digital displays and softcopy workstations for digital mammography.
Limited spatial resolution, luminance, and dynamic range cannot be solved simply by hardware improvements or computer
programming alone. A possible solution of these problems is the application of multi-scale contrast enhancement techniques
derived from non-linear models.

Radiologists are mostly familiar with films where the Modulation Transfer Function (MTF) is approximately equal to 2° gray
levels of contrast resolution. However, images acquired with digital detectors can record at least 2'* different gray levels of
intensity and are now commercially available. The wealth of dynamic range within these digital acquisition systems provides
strong evidence that the signal-to-noise-ratio (SNR) can be increased in digital mammography. For expert radiologists the
human visual system can detect at most 2’ shades of gray. These considerations motivate the need for judicious methods of
processing of digital radiographs that can optimize the bandwidth of the human visual system. We have designed
enhancement software that is well adapted for this purpose and provides a “data mining” tool to map and make visible
selected “quantum levels” of information living within the wide range of contrast resolution provided by digital detectors.

Medical imaging is a field in which quantitative accuracy and qualitative fidelity are paramount. In any image enhancement
process distortion of the original image and artifacts are not affordable. Multidimensional feature enhancement via wavelet
analysis has been previously demonstrated on mammograms [3], [4], [5], [6], [7], [8] and is a powerful tool for processing
digital medical images without artifacts. The enhancement process adjusts multi-scale coefficients at some particular spatial-
frequency scale by increasing, decreasing or resetting their values. Each image is then reconstructed with modified
coefficients. This simple enhancement technique relies on the idea that features of interest in a given radiograph are
detectable at a particular scale and can be amplified, whereas noise and less clinically interesting features may live at other
levels of analysis whose visual appearance can be diminished or eliminated in a reconstructed image. Further results and
detailed descriptions of these methods can be found in [9], [10], [11], [12], [13], [14], [15].

Surprisingly, there have been very few studies carried out to evaluate the benefits of multi-scale enhancement methods in
terms of diagnostic performance. Our study aimed at providing quantitative evidence of these benefits. ROC analysis [16] is
most commonly used in medical imaging for such purposes, though alternative statistical approaches can be found as well
[17]. ROC curves have been compared to evaluate the visibility of malignancies [18], mass detection techniques [19] or
algorithms for computer-aided diagnosis (CAD) that use neural networks [20].




The chapter is organized as follows. In Section 2 we describe a protocol for multi-scale non-linear contrast enhancement.
After a short overview of the use of multi-scale expansions for contrast enhancement we discuss the dyadic spline wavelet
selected, its implementation, and how a non-linear enhancement function is applied to multi-scale coefficients. Section 3
addresses the design of a graphical user interface (GUI) that was developed to carry out the ROC study including high-
performance displays and specialized hardware for softcopy display of digital mammograms. Next, the ROC study itself
together with its results and subsequent data analysis is presented in Section 4. Aflera diSﬁ!ISSi{)i} af the results of the sméy,
conclusions and possible directions of future research are presented in Section 5. ,

2. ENEANCEMENT PROTGCGL

2.1. Contrast Enhsncement via Multi-scale Expansmns' A Short Overview

We summarize below, the advantages of the use of overcomplete multi-scale fepreseﬁtatiens for adapnve contrast ’; :
enhancement of digital mammograms. Critically sampled multi-scale representations are not suitable for detection and

enhancement tasks because of aliasing effects introduced during downsampling of the analysis [21], [22]. However,

overcomplete representations avoid such aliasing artifacts and have the desirable property of bemg shift invariant [23], [24]. -
Indeed, this property ensures that the spatial locations of any ;nammegraph;c finding within in an image are preserved across
all scales. Thus, in our approach the transform coefficient matrix size at each scale remains the same as the original spat:al '

resolution of the digital mammogram, since there is no downsampling across each level of analysis.

Overcomplete multi-scale analysis and reconstruction algorithms using dyadic scales previously developed in [25}, [26], 3&6 o ‘

{27} were used as an initial choice of analysis function for our enhancement protocol. The implementation was carried out
using several lowpass and highpass filters with localized frequency support. At each level of the multi-scale expansion an
" input image is decomposed into a coarse approximation and detailed structures. The coarse approximation is the output ﬁ‘{}m‘

applying a lowpass filter, and the detailed structures are obtained from highpass filtering. The approximation image

corresponds to scaling coefficients, whereas the details extracted from the 3pprexzm3tlon are wavelet coefficients at a
particular scale. This prosedure is successively repeated on the apprexamataen image to obtain multiple levels of analysis.

The coarsest approximation is often referred to as “dc-cap”. A gain or enhancement function modifies the matrices of o
coefficients that have been isolated by the filters at each level and may boost coefficients at some scales and/or attenuate

others. If the filters meet a perfect reconstruction condition, the image can be reconstructed from its wavelet representation of

scaling and wavelet coefficients [28]. The filter bank implementation of enhancement processing by an expansica— :
reconstruction algorithm for 2 levels of analysas is schematically illustrated in F;gure 1. Image reconstruction that is also -

accomplished by appropriate filtering aperatzans is p;esented in a simplified manner in Fi igure 1.
HP = Highpass Filter
LP = Lowpass Filter

DC-Cap

Contrast

Digital Enhanced
Mammogram Digital
Mammogram

Level 1

Maitl-Sesic Expans:en ‘with Enhancement Module Image Reconstruction

Figure 1: Mulfi-scale analys:s with non-linear contrast e;zhmcement* Schematic of filter bank ;mplementatxen In the left psrk

multi-scale expansion with enhancement for 2 levels of aaalys;s is shown, and remnstructmn is presented (ina stmple ed

manner) in the right part.

The modified matrices of coefficients are snnpiy giugged in” during reccnStrucﬁen pfcducing a “focused” subband -
enhancement. As shown above, the enhancement function can be implemented independently of a particular set of filters and

easily incorporated into a filter bank to provide the benefits of muliti-scale enhancement 1], [29].



2.2. High Speed Implementation to Support Interactive Processing

Similar to orthogonal and biorthogonal discrete wavelet transforms [30], the discrete dyadic wavelet transform can be
implemented within a hierarchical filtering scheme. Let an input signal x(n) be real, x(n)e!'(Z), ne [O,N —1], ie., x(n) is
supported on the index interval [0, N-1], and let X (@) be its Fourier transform. Depending on the length of each filter
impulse response, filtering an input signal may be computed either by multiplying X (@) by the frequency response of a

filter or by circularly convolving x(n) with the impulse response of a filter. Of course, such a periodically extended signal
may change abruptly at the boundaries and cause artifacts. A common remedy for such a problem is realized by constructing
a mirror extended signal

_|x(=n-1), ifne[-N,-1]
Toe (1) = x(n), ifne[0,N-17

where we chose the signal x,,.(n) to be supported in [-N, N-1]. In [1] it is shown how a mirror extension is a particularly
elegant solution in conjunction with symmetric/anti-symmetric filters, since a signal is of a particular type of symmetry at
each stage of the filter bank. The optimized circular convolution described in [1] was implemented in native “ANSI C” to
speed up performance for multi-scale decomposition and image reconstruction. Parameters of this algorithm included number
of levels of analysis, gain, and threshold. This algorithm was incorporated into a graphical user interface (GUI) developed
during the preparation of the study.

As a further goal, we envision developing feature specific enhancement protocols for each type of lesion. An enhancement
protocol would consist of a multi-scale expansion of a mammogram by a specific basis and an associated non-linear
enhancement function that is best matched to a specific type of lesion, e.g. microcalcifications. For the study under
consideration, a dyadic spline wavelet function was used as the basis, and a non-linear sigmoidal function was applied as the
enhancement function. Both are described in greater detail next.

2.3. Dyadic Spline Wavelet Algorithm
X—u

The wavelet transform of a signal f{x) at scale s and position x is defined by Wf(u,s)=f*y, . = E f(x) %{/f (—)dx R
\ 5 <

where the function f is projected on a family of tra_nslated and dilated basis functions (wavelets) v, (x) =%y/(x;u).

w(x) is the mother wavelet of zero average. Both, translation and dilation parameters » and s are continuous for the

continuous wavelet transform. To allow fast numerical implementation of discrete wavelet transforms, Mallat and Zhong [31]
introduced the dyadic wavelet transform, where the scale parameter varies only along the dyadic sequence {2}, with je Z.

Extending this approach to two dimensions by the use of a tensor product yields the 2-D dyadic wavelet transform that
partitions plane orientations into two bands. This means that there are two channels of analysis along orthogonal directions x
and y. The wavelet transform of the 2-D signal f{x,y) at the scale 2 has two components defined by:

. 1 X .
W, f(x.3)=f*y, (x,y) and W] f(x,y)= f*y} (x,y), with y} (x,p)= Erv/’ (F,E}%) » (d=1,2). We used the quadratic

spline wavelet function y(x) defined by Mallat and Zhong in [31] of compact support and continuously differentiable. Its

4
sin(%/,)
Fourier transform can be derived as (@)= jw)[-——A) . w(x) is the first derivative of a cubic spline smoothing

%

4
n sin(%,
function 4(x), whose Fourier transform is &(@) = [—;—/‘L)J [1]. These functions are displayed for the one-dimensional
4 o

Z

case in Figure 2 below.
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Figure 2: (a) Cubic spline smoothing function é(x) (b) Quadratic spline wavelet w‘x} of compact support defined as the f' rst )

derivative of the smoothing function.

Using a wavelet that is the derivative of a smoothmg function it can be shown that the wavelet tr&nsform we oS of the mgzzal I |
is proportional to the derivative of the signal smoothed at the scale 2/ [32]. The coefficients of modulus maxima detection are o )

then equivalent to an adaptive sampling that finds signal variation points in the two orthogonal directions x and y.

As images represent finite energy signals measured at some finite resolution, we cannot cempute the wavelet transform at .

scales below the limit set by this resolution. We applied this analysis at dyadic scales varying from 1 (original signal) to the

limit imgeseé by &sq&isiﬁaﬁ (digitizer sampling rate). Figure 3 shows an example for one level of an overcomplete wavelet
expansion of a region of interest (ROI) with a spiculated mass at a dyadic scaie: and in Fzgure 4 wavelet coefficients of '

microcalcifications at the ﬁaest dyadic scale are presenteé

@ | ®) ) @ |
Figure 3: Level 5 of an overcomplete dyaézc wavelet expansnen of a spiculated mass (a) ﬂngmai image. (b) Horizontal ﬂeta;is
®© Vertlcsl details.(d) Approx;matlen image. S

® f O : @
Flgm‘e 4: (a} Original ROI with mlcraealclﬁcatmas. {b) Hﬁmentsl and {c) Vertlcal dyadic wavelet coefficients.

2.4. Non-Linear Enhancement Function

Modification of selected analysis coefficients within a certain scale can make more obvious mdiscemibie or barely seen

mammographic features [14]. Contrast enhancement was achieved by applying an enhancement function to transform

coefficients at selected scales. This operation results in local attenuation or amplification of coefficients. Enhancement or
gain functions must be cumulative and monotonically increasing, in order to preserve the order of i mtensxty information in the
‘original image and to avoid artifacts [26]. Figure 5(a) provides a very simple example of a piecewise linear enhancement
function. Multi-scale coefficients are denoted w;, which are modified by applying an enhancement function f{w;). T is the
threshold of the function, and « the gain. The effect of the enhancement function depends on the value of the angle 6. For §< '

45° there is an attenuation of the coefficients (a<1), at §= 45° we have the identity function (a=1), and for > 45° there is a

smooth amplification of the coefficients (a>1). The values of the two parameters, T and & (or @), determine the final shape of '

the enhancement function. Figure 5(b) displays a hard-thresholding function for denoising, where coefficients with modulus

[ g]s T are set to zero. Unfortunately, these two particular functions have the disadvantage of being discontinuous at the -

threshold value #T. This could result in an abnormal distribution of coefficient values in the output and may create sharp =

i



peaks on both ends of the histogram of a particular output mapping. For this reason, smoother functions, like sigmoids, are
preferable and were used in this study. Figure 6 shows an example of such a function as described in [2].
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Figure S: (a) A simple piecewise linear enhancement function, (b) Hard-thresholding function.
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Figure 6: A sigmoidal non-linear enhancement function.

The analytical formulation of the sigmoidal enhancement function as designed in [33], [2] is the following:

f(wy)=al sigm(c(w; — b))~ sigm(-c(w;+ b))]
1
a= sigm(c(1-b)) - sigm(—c(1+))

sigm(y) =

,0<b<1 ey

1+e™

Parameters b and c control the threshold and the rate of enhancement (gain) respectively. This enhancement function is
continuous, monotically increasing, and has a continuous first derivative. This ensures that the application of the function will
not introduce any new discontinuities of coefficients in the transform domain.

From Figure 6 we see that this enhancement function decreases the value of the coefficients around zero, which is equivalent
to a denoising action, while it may incréase values of the coefficients outside this range, equivalent to enhancement or
amplification. This type of enhancement function, in ‘steps’, offers a very rich and flexible paradigm to carry out non-linear
dynamic analysis of coefficients within a specific scale [34].

There are many criteria for the selection of the enhancement function applied to the coefficients of a particular level of
analysis for contrast enhancement. One goal of the study described here was to develop a research tool for testing
enhancement functions targeted for specific mammographic features. As this process requires specialized expertise and a
substantial time investment, no systematic study of the problem of associating enhancement functions with target features in
mammograms has been reported in the literature.

In general, non-linear estimators are signal dependent and behave differently for different realizations of each signal. In this
context, Johnstone and Donoho have shown that by considering the signal as deterministic, thresholding of wavelet
coefficients gives a nearly optimal estimation of piecewise smooth functions [35], [36]. More specifically, for a noisy signal

of size N, thresholding of the wavelet coefficients with T = o\/2In(N) , where ¢ is the standard deviation of the coefficients,

provides an asymptotically optimal estimator of the original signal in the mini-max sense [36]. Thresholding of wavelet
coefficients performs an adaptive smoothing of the image by averaging noisy areas and preserving or enhancing coefficients
in areas of sharp transitions. Noise standard deviations can be estimated by determining the median wavelet coefficient value
at the finest scale or with local discrete statistical estimation in the transform domain. Using extremely local variances for the




estimation of a threshold leads to a very aggressive posturing of the enhancement function, and repfeseats a high amount of ‘

intervention in adjusting the output, while global variance measurements are less noticeable. Superiority of either method

depends on the screening protocol used by the radiologist and the kind of analysis to be performed. For example, fine
microcalcifications represent high frequency information of the image. We would expect the local variance for such a feature -

to be high within a selected ROL Consequently, smooth amplification of coefficients within this particular spatial frequency -
range (in combination with possibly decreasing the information of other spatial frequencies) will enhance these features of
interest. Similar analysis can be done to enhance low spatial frequency features such as masses. A block diagram of the -~
enhancement process for coefficients at selected scales, which are chosen with respect to the partzcuiar mammagraphic o

feature to be enhanced, is shown in Figure 7 below.

Since the computation of the enhancement pazameters uses data depeadent mformatmn sach as local or gisbal eeefﬁc;eat I
variance, digital and digitized radiographs acquired under different imaging conditions are best precessed independently to -

achieve optimal enhancement. Intrinsic properties of the radiograph are therefore incorporated in the setting of the

parameters. In our work we used both coefficient variance computed with respect to a selected ROI and user input (see o 3

Section 3.2) to adapt the threshold and gain p&ramete;'s

Feature Specific Determination of App!iea.tiea of ~ Image .
Coefficients at |—p Enhancement 5 Non-imear Recanstm?tmg
Selected Scales : Parameters Enhancement from Modified

- . Function Coefficients

Figure 7: Block diagram of modifying feature specific coefficients at selected scales by applying a non-linear enhancement ‘functitvm.

3. DEVELOPMENT OF A GRAPHICAL USER INTERFACE (Gm}

3.1. Motivation

Running such an enhancement algorithm in a batch mode ;mght be sufficient for smgle experiments. However, aéjastmeat of
parameters tied to a data dependent enhancement function is slow, because of the repeated need to decompose and
reconstruct from modified coefficients. A more desirable situation would be to observe the results of modified multi-scale
coefficients interactively and fo continue the enhancement procedure, until results are visually satisfactory or the decision is ~

made that no further improvement can be achieved. In addition, with introducing fixed enhancement protocols into a clinical
screening paradigm, the algorithm must be simple, fast, and user-friendly, i.e. usage of the algorithm should be familiar to the

radiologist and intuitive. Since each radiologist may have preferences with respect to contrast in mammograms, it must be
possible to aéjast parameter seftings to individual preferences. Thus, we designed a graphical user interface (GUI) to

facilitate earrymg out such a study and to create a softcopy display prototype, whose successors might find entrance into

clinical screening. We call this application a “test bed” seﬁ‘copy display taef Hts ﬁrst version was employed for the RGC ‘

study described in the next section.
3.2. Designand Im;;}ementst;en

The gra;}htcal user interface (GUI) developed for this study was written in Vssa:al C++ 6. 9 'Ihe code for the wavelet

expansion and image reconstruction that was written in native “ANSI C” to speed up performance could be incorporated and

executed in this environment without major modifications, thus shortening develcpment time. Some of the guidehnes and

considerations for the design and implementation of the GUI are described next.

The prototype interface was primarily designed to process raw 16-bit data. Data was obtaaned from a natlona! mammography
database of digitized radiographs provided by the University of South Florida (USF, “Digital Database for Screening
- Mammography” (DDSM)). Our database of digitized mammograms (stored on twenty-two 8mm tapes) at the time of the
study contained 586 selected cases of malignant lesions, biopsy proven, and 437 cases of normal breasts. More specifically,
different types of lesions are represented in the following proportions: 100 round and oval malignant masses, 216 spicular -
lesions and 248 microcalcifications. 559 cases of dense breasts (density of 3 and 4) with 266 normals and 293 cancerous, *

referred by radiologists as the most challenging cases, were included in the database.
Images from the mammography database were digitized from film at resolutions of 40 to 50 pm. Image line ieagths {# of

columns) varied between 2000 and 3000 pixels, and number of rows from 4000 to 5900 pixels. Depending on the scanner

utilized for digitization the contrast resolution was either 12 bits or 16 bits per pixel resulting in 15-50 megabytes per view.

To handle this large amount of data and to provide the dlagnosmg radiologist as much information as possible, ‘all four views :
(right and left medial-lateral (RMLO, LMLG} and right and left cranial-caudal (RCC, LCC) of a case were loaded into )

memory and displayed as downsampled images on display screen, which consisted of two high-resolution MegaScan

B 3



monitors each with a screen size of 2048 by 2560 pixels. Specialized framebuffers allowed a display of 2'° gray levels (see
Section 3.3). The four views were aligned to assist the radiologist to look for asymmetries. In addition, one view could be
selected, and a viewport could display a selected region of interest (ROI) at full (original) resolution from a selected
mammogram. The size of the viewport could be chosen as 512 by 512, 1014 by 1024 or even 2048 by 2048. The center of the
ROI was determined through the mouse pointer in a chosen window. Thus, the original mammogram could also be examined
through the viewport, if desired. More importantly, suspicious areas could be captured in the viewport and processed through
enhancement via the multi-scale expansion described in Section 2. For the enhancement procedure the user could adjust the
number of subbands of the expansion as well. After selecting a ROI the image was decomposed onto dyadic wavelet basis
functions yielding wavelet coefficients. Coefficients were modified by a sigmoidal non-linear enhancement function, and the
image was reconstructed from these modified coefficients in nearly real-time.

Figure 8(a) shows Dr, Koenigsberg, one of three radiologists who participated in this investigation, during the ROC study.
Figure 8(b) depicts a typical screen display of the GUI showing additional viewports described above.

(a) (b)
Figure 8: (a) Tova Koenigsberg, M.D., using the GUI during the preliminary ROC study described above. (b) Typical screen
display used during the ROC study: four original digitized mammograms of one case on the right monitor, and a
selected view, the GUI interface for parameter adjustments, original and enhanced ROI are shown on the left monitor.

As mentioned in Section 2.4 the shape of the enhancement function can be changed through modification of the two
parameters gain and threshold. Therefore, each parameter could be adjusted through sliders for each level (subband) of the
multi-scale expansion (see Figure 9(b)). On release of the slider button, a reconstruction “event” was “triggered”, and a
resulting image presented in an output window. For example, reconstruction of a 512 by 512 matrix for five levels of
decomposition (5 subbands) took 5 to 6 seconds. For four subbands reconstruction time shortened to 4 to 5 seconds.
Reconstruction times t.co, for different sizes of the ROI and different number of levels of analysis are presented in Table 1.
However, reconstruction time can certainly be improved to achieve true real-time performance, by employing faster

algorithms.

512x 512 4-5 seconds 6-7 seconds
1024 x 1024 19-20 seconds : 24-25 seconds
Table 1: Reconstruction times t,, for two different levels of analysis and two sizes of ROL.

After processing, enhanced images could be saved together with information about the location of the ROI (the position of
the ROI was marked in its corresponding downsampled view) to facilitate evaluation of a particular diagnosis for each case in
comparison with the “ground truth” provided in the USF database. All suspicious areas in a case could be carefully examined
by sequentially choosing different views and multiple ROIs. X

Figure 9(b) shows the test bed interface as an illustration. Interactive (real-time) enhancement was accomplished via sliders
shown in the graphical user interface (GUI). The enhancement operation relied on the optimality of parameters derived from
their non-linear models and on the strategy employed for the type of enhancement applied to each subband of coefficients
(amplification, preservation or diminution). Selected subband coefficients at a particular level could be strongly suppressed
by choosing large thresholds (> 2) and small gains (< 1), which can be desirable for the elimination of (structured and
acquisition) noise, or normal benign anatomical (fibroglandular) structures.

Since the size of digital mammograms is quite large, an ROI (fixed at either 512 x 512 or 1024 x 1024) within the original
image was chosen to avoid computing over regions that do not contain suspicious areas. This is also shown in Figure 9,
where Figure 9(a) exhibits an original digitized mammogram with a 512 x 512 ROI that contains a possible mass.




Figure 9(c) and Figure 9(d) display this ROI befere and 3ﬁer enhaﬁcemeat wa aea-ime&r mod;ﬁcatma of maltx-sc&le \.
coefficients, respectweiy , «

(@ ' - ® ‘ ‘ g
Figure 9: {a} Original mammngrnm with selected ROI containing a mass, (b} Multl—Scale Cantmst Enhancemeﬁt {MSCE) GUI -
{¢) Original ROI, and {d) Exhsa&ced ROI :

3.3. Display and Hardware Settmgs

e

The enhancement protocol was executed on an IBM InteihStatmn Z Pro Prcfessnonal Warkstatzon Type 6865 ThiS machme -
had two Intel Pentium II Xeon micrcprecessars (450 MHz), 512 Mbytes of RAM and was equ;pped with 36 Gbytes of hzré L

disk space. Windows NT 4.0 with service pack 4 was the operating system. x
To explore the richness of information quantized at 16-bit per pixel (bpp) grayscale data (65536 shades ef gray), the IBM :

IntelliStation ‘workstation was equipped with two BARCOMed 5MP1H Graphics controllers. These are high-resolution -
display subsystems for the PCI bus with a resolution of 2048x2560 pixels each, a digital-to-analog converter (DAC) capable

of 1024 shades of gray, and real time window leveling. With the BARCO framebuffers, an extended hardware palette of
nearly 16,000 entries could be accessed through specialized “C” function calls that were part of a library provided to us as
developers for BARCO/Metheus. Using these library functions, the extended palette was loaded with a ramp of 4096 shades -
of gray corresponding to 12-bit resolution. Images stored in 16-bit per pixel format, were rescaled to 12 bpp, if necessary
(most of the mammograms were digitized at a resolution of 12 bpp), and then displayed at full resolution. Direct access to the -
video framebuffer also sped up the display process useful for updating and refreshing the dszerent views on the screen.

Two high-resolution MegaScan monitors were attached to this workstation providing dual headed d;spiay on a single Iegicai ‘
framebuffer or virtual desktop of 4000x2048 pixels, respectively with Windows NT 4.0. To ensure the accurate depiction of
the same image quality on both screens, a BARCO P1500 luminance photometer was used. It recognized the 1024 shades of
gray displayed by a monitor and had a range of 0-450ft-L. Both monitors were calibrated to correct for non-imeanty of o
display properties through gamma correction. ’

Lighting conditions were controlled for the ROC study to model readang room condmeas The amblent I:ght mtensxty was
measured with the luminance photometer to be 12.802659 candelea/m®. It is worthwhile to note that the optimality of

enhancement parameters is independent of the CRT display quality and the image acquisition quality. As their computation is
data driven, they are adapted to signal content and its characteristics. As our radiologists gave us fee&back on the quality ef '
the enhancement, we can adjust these mmal default settmgs in future studies.

4. DESCRIPTION OF THE RECEIVER OPERATING CHARACTERISTICS (ROC) STUDY

The first receiver operating characteristics (ROC) study focused on overcomplete dyadic wavelets for enhancement of .
mammographic features in digitized mammograms. Specifically, dyadlc spline wavelet functions were used together witha
sigmoidal non-linear enhancement function explicitly described in Section 2. The ROC study included three racheiegists s



specialized in mammography. The Director of the Breast Imaging Center at Columbia-Presbyterian Medical Center, Dr.
Suzanne Smith, assisted in the selection of cases.

4.1. Selection of Cases

To measure the benefits of diagnosing digitized mammograms with enhancement through multi-scale expansions, we focused
on dense mammograms, i.e. mammograms of density 3 and 4 on the American College of Radiology (ACR) breast density
rating, which are the most difficult cases in screening. In general, the enhancement protocol aimed at improving the detection
and localization of mammographic features, such as microcalcifications, masses, and spicular lesions without introducing
“false-positives”. »

To compare the performance of radiologists with and without using the enhancement tool, two groups of 30 cases each were
presented. Each group contained 15 cases of cancerous and 15 cases of normal mammograms. As mentioned above, a
national mammography database of the University of South Florida provided “ground truth” (mostly through biopsy) for the
selected cases. The selection was carried out very carefully under the guidance of a mammographer (Dr. Smith), in order to
find rather challenging cases of similar difficulty for each group. Images showing metal markers (“bibis”) to indicate
suspicious regions of breast tissue were avoided as well as obvious malignancies. Due to time constraints the number of cases
‘was limited for this initial study.

42, Paradigm of Diagnosis of Study
For each case presented to the radiologist, the enhancement procedure followed was the following:

Paradigm A:  Without Enhancement:

The radiologist made a diagnosis based only on the four original displays and the viewport. No processing of ROIs was
allowed.

Paradigm B:  With Enhancement:

The radiologist selected an ROI in one of the views and could apply multi-scale enhancement. Four levels of coefficients
were computed. The radiologist then evaluated the quality of an enhanced ROI and adjusted the equalizer sliders of a channel
to improve the visual quality of suspicious regions. Once he/she was satisfied with the visual result or if he/she judged that
additional benefit could not be achieved, he/she made a diagnostic decision.

A diagnosis included specifying all lesions found and assigning a BI-RAD scale to each breast and the case. In addition, the
radiologist was asked to choose a level of confidence (LOC) for each positive diagnosis, i.e. cancer is present, on an integer
scale from 1 (definitely negative, i.e. total confidence that there are no malignant lesions) to 5 (definitely positive, i.e. total
confidence that there is a malignant lesion). The value for the LOC was used in the analysis of data to decide whether a lesion
was classified as malignant or benign (please see discussion of LOC ratings in Section 4.4).

43. ROC Data

Table 2 and Table 3 summarize the data acquired during the study. Group1 comprises the set of cases, where the radiologists
were allowed to take advantage of the enhancement protocol, whereas Group 2 contains those cases, where no processing
could be applied. Each of the tables shows the case numbers, the case designation and total number (#) of lesions for each
case according to the mammography database (DB), and for each of the three mammographers the BI RAD rating and level
of confidence (LOC) values. The BI_RAD rating could be chosen from the standard categories 0-5 with 0 meaning that
additional information for a more confident diagnosis was needed. In such cases, the radiologists were asked to also select a
~ BI_RAD rating different from 0, if they were asked to make a diagnosis without any additional information. This number is
shown in parentheses for such cases.

In each table both groups are sorted into actually-negative cases (normals with “0 lesions) and actually-positive cases
(cancers with, at least “1 malignant lesion), since this is required for subsequent analysis of the data.




Groun1

I

(with Enhancement) : . .
. ___|Mammoaranher 1 Mammouaranher 2 . Mammoarapher 3
Case# |Database |DB Total# of Lesions Bl RAD Loc Bl RAD LOC Bl RAD LOC
2 A 0058 1] 4 3 1 1 -3 2
| 5 | A 0089 0 1 2 i 1 1 1
[ A 0041 0 3 2 1 1 1 1
7 A 0077 1] 3 2 2 1 2 1
] A 0064 1] 2 2 2 1 2 2
13 A 0067 4] (1)) 2 A 1 _ 03 ‘3
15 A 0080 0 0(3) 3 2 1 2 1
18 A 0089 4] 3 3 1 1 1 2
18 A 0062 [i] 2 2 i 1 2 1
21 A 0057 a 2 2 1 i a3 3
24 A 0072 0 1 2 1 1 1 1
25 A 0070 0 1 2 [1]#)] 2 1 2
28 A 0088 g 1 2 1 i 2 1 -
28 A 0039 1] 3 2 1 i [10)] 3
30 A 0092 0 3 2 1 1 1 1
4 B 3044 1 4 4 4 4 4 3
3 B 3073 1 3 2 3 2 4 3
4 B 3006 1 5 5 5 5 5 5
8 B 3032 1 0(3) 2 5 4 4 4
10 B 3107 1 5 4 4 4 5 4
11 C 0060 1 o3 3 1] 3 [1£)] 3
12 B 3057 1 4 4 5 4 4 4
14 B 3078 1 5 4 5 4 a4 3
17 B 3033 1 1)) 2 o 2 03 3
48 B 3031 1 0i4) 4 5 4 1)) 3
20 B 3076 1 [1]K)] 3 [¢] 3 0(5) 4
22 B 3058 1 5 5 5 5 4 4
23 B 3079 i | 2 2 1 1 1 1
27 B 3047 1 3 2 o4y 3 Of4) 3
29 C o008 i [4i)] 3 3 3 [4]C)] 3 -

Table 2: ROC data for three mammographers for Group 1, i.e. with Enhancement enabled.

Groun2_|(without Enhancement)

i

I

Table 3: ROC data for three mammographers for Group 2, i.e. without enhancement.

|Mammoarapher 1 Mammoaracher 2 Mammoarapher 3 o
Case # |Database |DB Total # of Lesions Bl RAD LocC Bl RAD LOC Bl RAD LOC
3 A 0015 4] 2 2 1 1 1 : 1
4 A 0034 [i] 2 2 o3 2 [413] 3
| 5 A 0112 [i] 2 1 1 1 (L)) 3
8 A 0020 0 2 2 1 k| 2 2
] A 0003 o] 3 2 1 1 1 1
13 A 0030 1] 2 2 1 1 - o3 2
15 A 0008 1] 2 2 1 1 2 2
16 A_0037 1] 2 2 i 1 1 2
17 A 0099 0 03y 2 1 1 2 1
18 A 0116 1] 03 3 1 1 1 1
21 A 0035 1] 03 2 o5 3 1]K)] 3
23 A 0018 a 2 2 1 1 1 i
24 A 0022 0 2 2 1 1 003 3
27 A 0005 0 __ 03 2 03y - 2 1 2
30 A 0018 1] 2 2 i 1 1 2
1 B 3003 1 1 2 1 1 5 5
2 B8 3389 1 2 2 1 1 1 1
6 B 3009 1 o4 4 [1]K)] 2 ot 3
7 £ 0309 1 4 4 1 i Oid 3
10 C 0142 1 03 3 0(3) 2 1 2
11 B 30186 1 1 1C:)) 4 03 2 4 4
12 B 3382 1 2 2 1 1 3 2
14 B 3134 1 5 4 4 4 5 5
138 B 3005 3 03 3 3 3 [4[C)] 4 -
20 C 0127 1 0(3) 3 o4 3 0(4) 4
22 C 0015 1 al4) 4 o 4 5 . 5
25 B 3007 1 3 3 4 3 4 4
26 B 3012 1 5 5 5 5 04y 3
|28 B 3380 1 __0(4) 4 4 4 0(4) 4
29 C 0358 1 5 5 5 4 4

o



4.4. ROC Analysis: General Principles

The most widely used method to objectively evaluate the performance of a diagnostic system or the difference in
performance between two diagnostic systems is ROC analysis. It compares radiologists’ image-based diagnoses with known
states of disease and health. In ROC analysis, performance of a diagnostic system is described by the indices of “sensitivity”
and “specificity”, where “sensitivity” can be expressed as the true-positive fraction (TPF) and “specificity” by the true-
negative fraction (TNF) of a diagnosis [16]. In a complimentary way, the false-negative fraction (FNF) and the false-positive
fraction (FPF) can be defined as FNF = 1-TPF and FPF = 1-TPF, respectively, with a similar interpretation. Due to this
dependence, it is only necessary to measure one pair of indices, and frequentty TPF and FPF are used (as in our study).

The underlying model for ROC analysis is the use of probability density distributions of a radiologist’s confidence in a
positive diagnosis for a particular diagnostic task for true positive and true negative patients [16]. It is currently accepted that
based on a confidence threshold, i.e. a particular level of confidence (LOC) in a positive diagnosis, a diagnosis is considered
to be positive, if it exceeds this threshold, and a diagnosis is considered to be negative, if it falls below the threshold. TPF and
FPF are then calculated from the probability density distributions as areas under the curves delimited by the confidence
threshold (see Figure 10). If the confidence threshold is varied continuously, an ROC curve can be generated from the pair
values for TPF and FPF. ROC curves that indicate better decision performance are positioned higher in the unit square
spanned by FPF and TPF (higher TPF values for the same FPF values). The area under the ROC curve, 4, provides a useful
summary index for the inherent discrimination performance of a diagnostic system. Thus, 4, is the average value of
sensitivity of a corresponding ROC curve, if the specificity of the system is selected randomly between 0.0 and 1.0.
Conversely, it can be considered as the average value specificity of a corresponding ROC curve, if the sensitivity of the
system is selected randomly between 0.0 and 1.0 [16].
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Figure 10: Schematic example of the model that underlies ROC analysis. The bell-shaped curves represent probability density
distributions of a radiologist's confidence in a positive diagnosis. A confidence threshold, represented by a vertical line,
separates “positive” decisions from “negative” decisions (This figure was reprinted from [16]). '

In practice, data for an ROC analysis is obtained by providing a set of rating categories to the radiologist. For a rating scale
we chose discrete values from 1 to 5 for the level of confidence (LOC) in a positive diagnosis. The meaning of these values
was as follows: (1) definitely or almost definitely negative, (2) probably negative, (3) possibly positive, (4) probably positive,
and (5) definitely or almost definitely positive. With this choice the value for the LOC is similar to the standard BI RAD
rating scale used in screening.

To generate an ROC curve from discrete data requires assumptions about the functional form of the curve. The “binormal”
model has been widely used in medical imaging. This model includes two adjustable parameters, and it is assumed that each
conventional ROC curve has the same functional form as that implied by two “normal” (i.e., Gaussian) decision variable
distributions with generally different means and standard deviations [37], [38]. »

The two adjustable parameters of the binormal ROC curve can be taken to be the y-intercept and the slope of the straight line
that represents the ROC curve, when it is plotted on normal-deviate axes. These two parameters, denoted as “a” and “b”, can
be interpreted as an effective pair of underlying Gaussian distributions as the distance between the means of the two
distributions and the standard deviation of the actually negative distribution, respectively with both expressed in units of the
standard deviation of the actually positive distribution [16]. With the binormal model, a maximum-likelihood parameter
estimation scheme is then used to generate an ROC curve that best represents the data.

If two different diagnostic systems are to be evaluated, the statistical difference of an apparent difference between measured
ROC curves is of interest. Testing differences between ROC curves is well described in the literature [39], [40].




4.5. Results from ROC Analysis

In our study, ROC analysis was possible, since the “ground truth” for each case was provided by the mammography database. L
In general, any enhancement protocol should increase sensitivity, i.e. fraction of true-positives (TPF), without decreasing
specificity, i.e. essentially without increasing the fraction of false-positives (FPF) [41]. An initial analysis of the data counted
the number of false-positives and true-positives in each group of cases. Before a lesion was considered being diagnosed as o
malignant or benign, the LOC value was thresholded [16]. The threshold value influences the shape of the ROC curve and its
interpretation. For example, if the threshold for the level of confidence was chosen to be 3, meaning that lesions with a LOC
greater or equal 3 were considered as malignant, then the average TPF was found to be 0.667 with enhancement, and TPF =
0.569 without enhancement. This observed increase in sensitivity is encouraging, though it was accompanied by a slight -
increase in the fraction of false-positives (0.222 compared to 0.178). The latter is not too surprising, since the applied
. enhancement protocol only used dyadic spline wavelets with the non-linear sigmoidal enhancement function, which is
certainly not optimal for all types of lesions. We believe that dyadic spline wavelet expansions are best used to enhance - -

microcalcifications. If the analysis of the data only focused on microcalcifications, then we observed TPF = 0.417 with
enhancement compared to TPF = 0.222 without enhancement. No increase or decrease in FPF was noticed! The last finding’

supports the promise for future research to desagn specific enhancement protocols for each mammographic feature. Table 4

summarizes initial results of the ROC study usmg the saa'.eg}e basis function described earlier in Section 2.3.

0.667 0.233 0.569 : 0.178

TPF FPF TPF : FPF
0.417 , ~ 0.0 0.222 0.0

Table 4: Results of preliminary ROC Stiié}' TPF refers to the fractmn of true-pasntives and FPF to the fraction of fa!se-pns;t;ves

A more thorough analysis of the data was undertaken by using the ROCKIT software developed by a research group led by o

Charles Metz at the University of Chicago [42], [43]. This software package was written to analyze data from ROC studies -
and to generate corresponding ROC curves. More specifically, the purpose of ROCKIT is to calculate maximum-likelihood -

estimates of the parameters of a conventional “binormal” model for the input data, to calculate maximum-likelihood
estimates of the parameters of a “bivariate binormal” model for data from two potentially correlated diagnostic tests and,

thus, to estimate the binormal ROC curves implied by those data and their correlation; and to calculate the statistical

significance of the difference between two ROC curve estimates using any one of three distinct statistical tests:

1. The Bivariate Test: A bivariate Chl-square test of the simultaneous differences between the “a” pa:&n;cters aaé‘

between the “b” gar&metefs of the two RGC curves. (Null hypothesis: the data sets arose fr@m the same bmarma% ‘

ROC curve.)

2. The Area Test A univariate z-score test of the difference between the areas unéer the twe ROC curves. (szfi’

fiypotkesis: the data sets arose from binormal ROC curves with equal areas beneath them.)

3. The TFP Test: A univariate z-score test of the difference between the true-posmve fractions (TPF s) on the two ROC

curves at a selected false-positive fraction (FPF} {Naii hypatheszs the data sets arose from binormal ROC curves
- having the same TPF at the selected FPF. } R

Three types of i input data are aﬂowed for statistical testing of the differences between ROC curves

1. Unpaired (uncorrelated) test resuifs The two “conditions” are applied to mdependent case samples — for exampie L

from two different diagnostic tests performed on the different patleats from two different radiologists who make
probability 3udgments concerning the gresence of a specified disease in dlfferent zmages etc.; :

2. Fully paired {cerrei&ted} test resuits in whlch data from both of two candltzeas are available for each case in a smgie
case sample. The two “conditions” in each test-result pair could correspond, for example, to two different dxagncstzc ‘
tests performed on the same patient, to two different radiologists who make prabab;hty judgments cencermng the

presence ofa sgeciﬁeé disease in the same image, etc.; and

3. Partially-paired test results — for example two d;ffereﬁt dzagnostac tests perfermed on the same patient sample 33{2 ‘

on some additional p&tieats who received oaly one af the diagnostic tests.




Rockir assumes that the population ROC curve for each condition plots as a straight line on “normal-deviate” axes, or
equivalently, that the input data follow normal distributions after some unknown monotonic transformation [16]. ROC curves
measured in a broad variety of fields demonstrate this “binormal” form [44], [45], and [46]. The assumption may be satisfied
even when the raw data have multimodal and/or skewed distributions [43], [42].

Using the ROCKIT software the analysis was first applied independently to the datasets for Groupl and Group 2 for each of
the three radiologists. Unfortunately, this approach did not allow us to compare the diagnostic performance for the two
diagnostic systems (softcopy display with and without enhancement). The reason for that was that the analysis for, at least
one group of cases could not be completed, since the data was found to be degenerate [41]. In this case, the result of the ROC
analysis would be a straight line with a constant value for TPF, and, therefore the software aborts processing to avoid
meaningless output. According to the authors of the software, a degenerate data distribution can be found, if the number of
samples is too small or in datasets with many tied values [43].

Since the number of cases could not be increased after conducting the study, and in order to obtain more complete results, we
decided to apply the analysis to the union of data from all three radiologists. This was justified by the fact that all three
radiologists came from the same population with a similar level of experience. Thus, their performance should be similar
under the same conditions, and the data could be treated as independent samples (unpaired data). If the data did not have to
be pooled, it would have been unpaired, since the two different conditions were applied to different sample cases.
Nevertheless, we are well aware that the statistical significance of the results must be interpreted carefully. For future ROC
studies we plan to increase the number of cases, in order to avoid such a problem. To check on our assumption of

independent samples (unpaired data) and for completion we also repeated the analysis with the input as paired data. These
results are included in this chapter as well.

For the analysis Group 1 (with enhancement) was set as Condition 1 and Group 2 (without enhancement) was considered as
Condition 2. The resulting ROC curves for data analyzed as unpaired are shown in Figure 11. Their corresponding values for
FPF and TPF are given in Table 5. Finally, the most important results of ROC analysis, the binormal parameters g, b, and the
area under the ROC curve 4, with their corresponding standard errors, 95% confidence intervals, and correlation of g and &
are summarized for unpaired data in Table 6. Note that the 95% confidence intervals are symmetric for the binormal
parameters g and b, but asymmetric for the area index 4,. The corresponding results from the analysis as paired data follow
directly afterwards. ROC curves are shown in Figure 12, FPF and TPF values in Table 7, and parameters a, b, and 4, together
with their corresponding standard errors, 95% confidence intervals, and correlation of a and b in Table 8.
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Figure 11: ROC curves for data with Condition 1 (with enhancement) and Condition 2 (without enhancement) analyzed as
unpaired data (independent analysis).




Table 5: Values for false-positive fractions (FPF) and true-positive fractions (TPF) for Conditien 1 (with enhancement, TPF 1} siﬂi : )
Condition 2 (wnthuut enhancement, TPF 2) analyzed as unpalred data (independent analysis). L

TPF 1

FPF TPF 1 TPF2 FPF TPF2
_0.005 0.4886 0.4989 0.13 0.8155 0.7282
0.01 0.5521 0.5407 0.14 0.8232 0.7346
0.02 0.6199 | 0.5859 0.15 0.8304 0.7406
0.03 0.6612 0.614 0.2 0.86 | 0.7665
0.04 0.6911 0.6347 0.25 0.8823 0.7874
0.05 0.7145 0.6514 0.3 0.9003 0.8053

~ 006 0.7338 0.6653 0.4 0.9274 0.8352
_ 007 0.7501 0.6773 0.5 0.9472 0.8602
0.08 0.7642 0.6875 0.6 0.9625 0.8825
_0.08 0.7767 0.6974 0.7 0.9746 0.9035
0.1 0.7878 0.7061 0.8 0.9845 0.9244
_0.11 0.7979 0.714 0.9 0.9926 0.9475
0.12 0.8071 0.7213 0.95 0.9962 0.9619

1.6183 0.6393 70.9136 1.0813 " 0.4208
x??Stnnéar{i Errora | Standard Error b d adard Error'b T Standard Error A,
0.3162 0.2093 0.0325 0.2329 0.1307 0.0475
¢ Cgmﬁdence 95% Conﬁden
rterval fora Intervalfor'b

(0.9986, 2.2381)

(0 2291, 1.0495)

(0.8312, 0.9615)

(0.1647, 0.6770)

(0.6247, 1.5379)

(0.7301, 0.9162) _

i Correlation(a, b)

Folation(a, b)

0.6544

F ;

0.4989

Table 6: Binormal parameters ¢, b, area under ROC curve 4, with their corresponding standard errors, 95% confidence intervals, B
and correlation(a, 5) for Condition 1 (with enhaneemem‘) and C&néltlan 2 (without enhancemezzt} analyzed as unpaired

data (independent analysis).
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Figure 12: ROC curves for data with Condition 1 (with enhancement) and Condition 2 (without enhancément) analyzed as paired
data (correlated analysis).

FPF TPF 1 TPF 2 FPF TPF 1 TPF 2
0.005 0.494 0.5036 0.13 0.8155 0.7304
0.01 0.5565 0.5451 0.14 0.8232 0.7367
0.02 0.6232 0.5898 0.15 0.8303 0.7426
0.03 0.6638 0.6176 0.2 0.8595 0.7682
0.04 0.6932 0.6381 0.25 0.8817 0.7889
0.05 0.7162 0.6545 0.3 0.8994 0.8066
0.06 0.7351 0.6683 0.4 0.9263 0.8361
0.07 0.7512 0.6801 0.5 0.9461 0.8608
0.08 0.7651 0.6906 0.6 0.9614 0.8829
0.09 0.7774 0.7 0.7 0.9737 0.9036

0.1 0.7883 0.7086 08 0.9838 0.9244
0.11 0.7982 0.7164 0.9 0.9922 0.9472
0.12 0.8073 0.7236 0.95 0.9959 0.9617

Table 7: Values for false-positive fractions (FPF) and true-positive fractions (TPF) for Condition 1 (with enhancement, TPF 1) and
Condition 2 (without enhancement, TPF 2) analyzed as paired data (correlated analysis).




Standard Error a

t} 3337

95% Confidence | 95% Confidencs 95% Confidence .
Infervalfora” | " Intervalforb 5 Interval Tor AL
(0.9936, 2.2232) (0.2240, 1.0363) (0. 8394 0. 9613) (0. 62’!2 1 5407)) (0.1620, 6.6724) (0.7311, 0.9169)

F%;iéﬁe‘rreléﬁén(a; b) |
0.6506

Correlation sf A, far Condition 1 and Az for Csnd:t:&n 2: -0.0922

Table 8: Binormal par&meters a, b, area under ROC curve 4; wnﬁ: their corresponding standard errars, 95% cnnf dence intenfals,‘
and correlation(a, b) for Condition 1 (with enhancement} and Condition 2 (w;thaut anhaﬁcement} ssta!yzed as pan'ed data
{correlated analysis). :

4.6. Discussion

As seen from the analysis far unpaired éa;ta the value for the area under the ROC curve 4, was by 8.7% larger for Condattan '
1 (with enhancement) than it was for Condition 2 (without enhancement). In all cases the standard error for A, was between -
0.03 and 0.05, which was rather small. Though the 95% confidence intervals for 4, overlapped, there was a clear tendency
that diagnostic performance improved with enhancement in comparison with diagnosis without enhancement. All ROC
curves lay high in the unit square of FPF and TPF, which corresponded to accurate dlagnostlc performances in generai but

the curve for Condition 1 was positioned slightly higher (see Figure 11). ‘ ‘
Similar results were generally obtained for the analysis as paired data. The increase in A, for Condition 1 with respect to
Condition 2 was 8.5 %, but there was an overlap of the 95% confidence intervals for 4, as well. The ROC curve for
Condition 1 was also positioned slightly higher than the one for Condition 2 (see Figure 12). Values for a, b, and 4, were
very similar for both types of analysis. Hence, the same tendency of improved d;agnostic performance with snkaﬂcemeﬂz '
compared to é;agnoms without enhancement can be inferred. e
The observed increase of the summary index 4, within statistical errors and the higher position of the ROC curve for
diagnos;s with enhancement encourage us to further pursue the application of enhancement protocols for ina;namgraphtc

screening. We are aware of the fact that there always are inherent sources of vanabllaty in the index 4,, such as a “case- S
sample” component due to random variations in the difficulty of the cases included in an ROC experiment, a “between- =

reader” component due to random variations in the skills of the observers participating in the experiment, and a “within- -

reader” component associated with each reader’s inability to reproduce her/his diagnosis of every case on repeated readings -

[16]. In addition, we were not able to analyze the data for each radiologist separately due to data degeneracy as mentioned
above. The latter has diminished the statistical significance of our ;'esuits obtained frem the analysis of all data combined,
since not all samples were completely ;ndependent

Hence, for future ROC studies we plan to increase the nan}ber of cases to avoid degenerate datasets for the &a&%ys;s aﬁé fo
increase the statistical power of the experiment. ' :

Aside from statistical considerations and the cautious interpretatien of the results of this study we know that our prototype
test bed software tool can be further optimized. To improve multi-scale contrast enhancement the idea is to develop feature -
specific enhancement protocols with different bases and associated non-linear functions for each distinct mammographic
feature, such as microcalcifications, masses, and spicular lesions. The enhancement protocol used for this experiment, dyadic
sphﬁe wavelets with non-linear s;gmo;dal function, was suggested to work best for microcalcifications according to our -
previous work with multi-scale expansions [2], [25]. The results ef this first ROC expenment seem to cenf irm aur
expectations. ~ : : o



5. CONCLUSIONS AND FUTURE WORK

We have reported on the successful completion of the first receiver operating characteristics (ROC) study to evaluate the
benefits of contrast enhancement via overcomplete multi-scale expansions of mammograms. The study was carried out in
collaboration with radiologists at the Breast Imaging Center in Columbia-Presbyterian Medical Center and the Biomedical
Imaging Laboratory of Columbia University.

In continuation of our previous work in digital mammography, an enhancement protocol using a dyadic spline wavelet as the
basis for multi-scale expansion and an associated non-linear sigmoidal enhancement function was designed. Suspicious areas
(ROIs) of digitized mammograms were decomposed onto a multi-scale basis to obtain coefficients at distinct subbands.
Coefficients were modified by applying a non-linear sigmoidal function. Two parameters could be adjusted to change the
nature of enhancement. Image reconstruction from modified coefficients occurred in nearly real time through an interactive
interface running on a high-resolution digital mammography workstation. To visualize raw data of digitized mammograms at
the highest possible contrast and spatial resolutions, 16-Bit BARCO/Metheus framebuffers together with a dual headed high-
resolution MegaScan grayscale monitor were utilized in hardware. We incorporated specialized software function calls to
directly access the video framebuffer for fast/smooth image display and update.

To quantify the performance of our multi-scale based processing technique in terms of overall sensitivity and specificity, an
ROC study was designed and conducted with three radiologists from Columbia-Presbyterian Medical Center specialized in
mammography. Conventional ROC curves were generated and significant statistical parameters determined. The area under
the ROC curve A, was used as a summary index to quantify overall specificity and sensitivity of the two diagnostic systems
[16]. Unfortunately, it was not possible to analyze datasets for each of three mammographers separately due to data
degeneracy. Nevertheless, analyzing all the data together yielded a slight increase (8.7%) in the area 4, for diagnosis with
enhancement compared to diagnosis without. Despite the limited statistical significance of this result, it encourages us to
further investigate the application of multi-scale methods for contrast enhancement of mammograms. More extensive ROC
studies with a larger number of cases are planned to further evaluate the benefits of such processing techniques.

Ancillary to statistical results, we received very positive feedback from the participating radiologists, who expressed great
interest in using the interactive display tool and acknowledged a marked improvement in image quality, when enhancement
was applied.

The current enhancement protocol works best for the detection/enhancement of microcalcifications. Future directions of work
include the expansion of the choice of enhancement protocols to a menu of feature specific enhancement algorithms tailored
for each mammographic feature, such as microcalcifications, masses, and spicular lesions, e.g. the application of brushlet
functions [47], [48] to mammograms with spicular lesions. In addition, the investigation of a range of optimal enhancement
parameters and the optimization of our interface software tool comprise further projects. Our “dream” is to present a clinical
interface, where specific enhancement protocols can be selected by a physician by only “pushing a button on the screen”. We
envision that through such a clinical interface the diagnostic performance of radiologists in screening digital mammograms
could be substantially improved, both in terms of cost and quality. '
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Visualization of mammograms via fusion of enhanced features
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Image enhancement in mammography is typically concerned with either general visibility
of all features or conspicuity of a specific sign of malignancy. We describe a synthesis of
the two approaches through fusion of locally enhanced microcalcifications, circumscribed
masses, and stellate lesions. Both local processing and image fusion are performed within
a single wavelet transform framework which contributes to the computational efficiency
of the method. The algorithm not only allows for efficient combination of specific fea-
tures of importance, but also provides a flexible framework for incorporation of distinct
enhancement methods and their independent optimization.

Mammography, contrast enhancement, image fusion, wavelet transform.

1. INTRODUCTION

In general, mammographic image enhancement methods target either visualization of
all features in an image [1, 2, 3, 4] or visibility of specific features of importance such as
microcalcifications [5].

Methods from the first category are not optimized for a specific type of cancer, and
are often developed for a framework more general than mammography alone. The second
category approaches can be quite successful in their area of specialization; however, in
order to process mammograms for presence of distinct features, independent application
of different algorithms could result in both larger number of images to be interpreted by
a radiologist and increased computational complexity.

Here, we present an approach which overcomes these shortcomings and problematic
limitations via synthesis of the two paradigms by means of image fusion. The algorithm
consists of two major steps: (1) wavelet coefficients are modified distinctly for each type
of malignancy; (2) the obtained multiple sets of wavelet coefficients are fused into a single

This work was supported by the U.S. Army Medical Research and Materiel Command under
DAMD17-96-1-6093 and DAMD17-93-J-3003, and by the Whitaker Foundation.




set from which a reconstruction is csmpﬁte{i, The scheme allows efficient deployment of

an enhancement strategy appropriate for clinical screening protocols: an enhancement ‘
algorithm is first developed for each specific type of feature independently, and the results
are then combined using an appropriate fusion strategy. . ‘ ‘

2. WAVELET TRANSFORM

Wavelet based methods are particularly well suited for processing of mammograms since
mammographic features greatly vary in shape and size. Commonly used orthogonal and
biorthogonal wavelet transforms, however, may not be the best tool for mammographic
image enhancement because their lack of translation invariance can lead to artifacts possi- :
bly affecting a radiologist’s interpretation. Translation-invariant but overcomplete wavelet
representations avoid artifacts and have been successfuiiy used for precessmg of mammo-
grams [1, 2, 5]. ‘

Rotation invariance is another desirable property of wavelet éecompesﬂ;zoﬁs The
concept of steerability [6] has been utilized for construction of wavelet transforms enabling
rotation-invariant processing of mammograms [3]. Our scheme is built around a multiscale
spline derivative-based transform which, in addition to being translation-invariant and
approximately steerable, is also suitable for non-hnea,r methods of enhancement

We use z-y separable Wavelets S

P(z,y) = dﬁ””(x)ﬂp a(); ! NN

where f3,(z) denotes a central B—splaae of order p, a,n(i limit ourselves to ﬁi‘st and secené 1
derivatives d € {1,2}. Figure 1 shows wavelets with p=3. \ ‘
A rotation of wavelet ¥(z, y) by angie f can be expressed as

'gifg(z, y) =~ i ( 55 ) é”n‘ d* 5p+d($) d Bp+a(y)

pard voodzit dyt

where 7 = (cos8,sin#) = (ng,n,). The ‘térms & ggif(g’ £ ";“i(y} represent basis functions -

needed to apprt}ximateiy steer wavelet 1(z,y). A dyadic wavelet transform using these

basis functions can be lmplemented as a ﬁlter bank cons:stmg of ozie-dlmensmna,l filters
only [7]. ’ :

3. ENHANCEMENT OF MAMMOGRAPHIC FEATURES

3.1. Micracalczﬁcatmns | o : -
Microcalcifications appear on mammograms in approximately ha}f of breast cancer

cases. The assessment of shape, number, and distribution of microcalcifications is impor- '

tant for a radiologist to reach diagnosis. Microcalcifications are smaller than 1 mm in size

and can be difficult to locate when they are superimposed on dense breast tissue. A
Several techniques have been developed to improve the visibility of microcalcifications

[5, 8, 9]. The approach devised by Strickland and Hahn [5] is particularly well suited



(a) (b)
Figure 1. Spline derivatives in the 2-axis direction. (a) Wavelet equal to the first

derivative of a quartic spline. (b) Wavelet equal to the second derivative of a quintic
spline.

for our framework: they used an undecimated wavelet transform to approximate second
derivatives of a Gaussian probability density function for a multiscale matched filtering
for presence of microcalcifications.

Strickland and Hahn based their method on the observation that the average mi-
crocalcification can be modeled by a circularly symmetric Gaussian function. We take
advantage of this fact to model microcalcifications by central B-splines. Using B-spline
approximations of a Gaussian function, the assumption that a Gaussian object is visible
approximately over o pixels [5], and the fact that mammograms in the University of
Florida database were digitized at 116um resolution, four levels of the transform described
~ in Section 2 with, for example, p=3 are needed to encompass different sizes of microcal-
cifications. The wavelet decomposition including voices at scales 3 and 6 (corresponding
to Strickland and Hahn’s octaves “2.5” and “3.5”) was obtained from relations between
central B-splines at integer scales [10]. '

The wavelet decomposition enables approximations both to the second derivatives of
Gaussian along z and y directions and to Laplacian of Gaussian across distinct scales
employed by Strickland and Hahn. We proceed in a similar fashion: the two outputs
per scale are thresholded independently, all binary results are then combined, a circular
region centered at detected pixel locations is next multiplied by a gain, and, finally, the
modified transform coefficients are used for image fusion.

3.2. Circumscribed Masses
Almost half of missed cancers appear on mammograms as masses. Perception is a problem
particularly for patients with dense fibroglandular patterns. The detection of masses can

be especially difficult because of their small size and subtle contrast compared with normal
breast structures.




Fan and Laine [2] developed a discrete dyadic wavelet transform based algorithm
suitable for enhancement of masses. They constructed an approximation to Laplacian of
Gaussian across dyadic scales for an isotropic ;ﬁput to a giecewzse imear enhaﬁcement '
function. :

An approximation ta a La,plama,n of Gausszan across dyadxc scales is easy to obtam' .

using multiscale spline derivatives from Section 2: basis functmns & éfﬁff(x} il ”;‘*{y} with

d=2and i € {1,2} approximate the second derivative of a Gaussian function along
directions of z and y axis. The appropriate transform coefficient at each dyaélc scaies are
then added and their sum mput to the piecewise hnear functlen 2]

xe(K—I)T,zfx< -T
C(z) = ¢ Kz - ifjz] LT
x+(K )T ifz >T

used at each 1evei m—i-i of the transform separately. Due ta the expeeted szze of masses B
levels greater than 4 are enhanced more aggressively. :

The multiplicative factor obtained as the ratio between the mzt;mt and mput of the
enhancement function is next applied to the original wavelet coeﬁicxents before fusion and
the associated inverse wavelet transform are carried out. :

3.3. Steiiate Lesions

It is important for radiologists to identify stellate lesmns since theii' presence is a serious - .

indicator of malignancy. Stellate lesions vary in size and subtlety and, in’ a,ddltlon do not
have a clear boundary, making them difficult to detect. ‘ :

In the development of our algorithm, we utilized an observation macie by Kegeimeyer o
et al. about the distortion of edge orientation distribution induced by a stellate lesion [11].

'Normal mammograms show a roughly radial pattern with structure radiating from the
nipple to the chest wall. A stellate lesion not only chariges this pattern i)ut also creates
another center from which rays radiate. : .

The wavelet transform from Section 2 allows dzrectzonal analysis using ap;}roxznaatians :
to both first and second steerable derivatives of a Gaussian. A multiscale derivative-pair

quadratic feature detector was camgﬂi:ed by ﬁnémg the maxzmum of the local oriented =

energy with respect to angle 6,

Ezm(x,y)=\ﬁWizmS(%y))zwL(Wﬁgmé(m,y))ga' o - 5 (2)?5”‘; |

where W1 m,s(yx, g;)\ and W28.5(z,v) denote wavelet debomp‘asitions using first (qué,tioﬁ‘ SR
(1) with d =1) and second (Equation (1) with d = 2) derivative wavelet, respectively, =~
steered to angle §. The angle that maximizes the iocal oriented energy (2) represents .

orientation at pixel location (z, y) ; : -
Similar to the method from Section 3.1, processing is carried ozzt; Wlthin wmdaws of
scale dependent size: 1-norm of dlﬁ‘erences between the local and average orientations
was computed in the window and used as a measure of orientation nonuniformity. Soft
thresholding as a function of the orientation nonuniformity measure was next applied to
the transform coefficients at each dyadic scale mdepenéentiy The altered coefficients are
then included for fusion and recenstmctian : : '
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(a) (b)
Figure 2. (a) The cranio-caudal view of the left breast. (b) Enhanced image improves
visualization of the borders of the mass.

4. FUSION OF ENHANCED FEATURES

After coefficients are processed for enhancement of distinct mammographic features, the
corresponding coefficients are combined according to a fusion rule into a new set of trans-
form coefficients from which the fused result is reconstructed. As a fusion rule, the max-
imum oriented energy criterion was chosen: at each position and scale of the transform,
the coeflicient with greatest local energy was selected [12].

It is also possible to put distinct weights on selected features, and exclude other
features from the final result. '

Figure 2 shows the original mammogram and the processed image with improved con-
trast between the fat and glandular tissue.




5. CONCLUSION

The presented method incorporates a variety of properties of maéimographic image en-
hancement techniques tailored to specific signs of malignancy into a unified computa-
‘tional framework. A multiscale spline derivative-based transform proved flexible enough

for implicit enhancement of individual types of mammographic features and thus enabled

processing within a single wavelet transform decomposition. In addition to its efficiency,
the algorithm is well suited for further refinements; optimizatiens can be performed for -
each type of malignancy alone, and separately for the fusion strategy. '
Our preliminary experiments imply that an enhancement via fusion approach can pro-
vide more obvious clues for radiologists. Further clinical tests are planned to verify that
~ the versatility of this paradigm can provide a better viewing environment for a more re-
liable mterpretatzen in screenmg mammegra,phy » "
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